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ABSTRACT

We use a consistent relativistic formalism y» with relativistic Hartree wave-
functions and a covariant effective current operator with all the properties of
the Standard Model, to study semileptonic weak processes in nuclei. Results are
obtained for 8 - decay, u - capture, charge-changing v - reactions and neutral

v — scattering involving the isodoublet systems 'F - *70Q and *H - *He.



The nuclear system is currently described in terms of hadrons or quarks,
depending upon the distance scale. Electroweak interactions provide a funda-
mental tool for studying this system, but a complete kinematic range of probes
is necessary to investigate the regions of present theoretical interest. For this
purpose the traditional nonrelativistic approach® to the analysis of electroweak
Processes in nuclei is inadequate and a consistent relativistic theoretical frame-
work is needed. QHD (quantum ha,drodynamics),"l a relativistic quantum field
theory of the nuclear many-body problem based on mesons and baryons, provides
such a framework. It allows us to include relativistic corrections to all orders in
closed form, without expanding™ the conventional matrix elements. A rela-
tivistic formalism for electron - nucleus scattering based on QHD in the Hartree
‘approximation was proposed and studied by Serot™* and Walecka™ , and was
used to examine high q? elastic electron scattering from selected nuclei'® In this
paper we extend the analysis to include semileptonic weak processes, and apply
the formalism to study B-decay, u~- capture, charge-changing v~ reactions and

neutral v-scattering processes on the F - 170 and *H - *He isodoublet systems.

We generate relativistic Hartree wavefunctions"” by self-consistently solving
the coupled meson field equations (for the neutral meson fields %o, Vo, Po, Ao) and
the Dirac equation (for the baryon wavefunctions). The resulting wavefunctions

are of the form
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and the upper and lower radial wavefunctions for *70 and *He can be obtained”

We use an effective weak current operator " together with the Hartree
wavefunctions. We assume all formfactors (charge, magnetic, and axial) to have
& common momentum transfer dependence F(¢?) = f,.(¢?) F(0), where Jon (@)
is the empirical dipole fit. From the V - A structure of weak currents and CVC

theory, the vector part of the weak charge-changing current can be written in



analogy to the electromagnetic effective current operator:
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We incorporate the induced pseudo-scalar coupling, Fp(g*) = 2MF4(¢%)/(m? — q),

into the effective axial-vector charge-changing current. This gives :

1 e -
I = (8t 2 0,0.) Hepmnud(e)

where w(t) = F,(0)r4). Thus the total charge-changing weak current is given by
J(*) J(i) + Ji). The weak neutral current is given by J“’) = J"' 2sin? BWJ"

where J" = J? fs + JA"' is the electromagnetic current.

These currents are covariant, correctly describes properties of free nucleons,
and contain all the general features of the Standard Model. The vector current
is local and conserved in QHD; the axial vector current satisfies PCAC, and the

nonlocality reflects the physics of pion-pole dominance™

We must compute the matrix element for a semileptonic process"” using the
covariant effective currents ; this gives some new terms in the matrix element

involving ¢ X (axial-vector multipoles).
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The vector and axial vector multipole operators™ can be written in block
2 X 2 matrix form:
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Here we define Q1) = Q + A(E, — E;)/2M , and g = gA/2M. For charge-
changing processes, Q = r,, A = (Ap — A)re, and Q' =wy = F(”(O)ri; for
neutral-current processes, @ = (1 —sin®4,,)r; —sin’ 4,, = (Ap—An) (3 —sin’ §,)7s
—sin® 0,(},+,), and Q' = LF{"(0)7s. The single particle multipole operators
(T4, 215, 2"Y) are the multipole projections of the Pauli matrices, and are

defined following the convention of ref. 8

To compute the cross-sections and rates for the semnileptonic processes, we
must square the matrix element and evaluate appropriate spin sums. The
resulting v— (or #— )differential cross-section can be written in terms of ¢2 ; also,
for isoelastic processes, only even A, and odd f‘}"“‘, f‘j“ , and f:j multipoles

contribute!” Then the charge changing differential cross-section, for isoelastic

processes and arbitrary kinematics, becomes:
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For neutral! current scattering, m,? = 0.



The charged muon capture rate is given by
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The B - decay rate, in the long - ) limit, is given in ref. 9.

The total cross-section is obtained by integration over the possible solid
angles. It is convenient to integrate over ¢*, where ¢ is related to @ by
fc23 2
P =2 (1 - ——E——m—'cosﬂ)
€
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Combining with € = (v + M;)? — 2(v + M)vVM2 + g + (M2 +[3]%)

we can obtain the correct limits of integration.

We have carried out some checks of our derived results against the conven-
tional results!” We first checked that the relativistic Hartree formula reduces
to the conventional formula in the ERL limit, where terms proportional to m;
disappear. We next checked the nonrelativistjc limit of the cross-sections, by

taking the nonrelativistic limit of the wavefunctions,

_{ . x)
V= (;;x(r))’

where x(r) is the upper radial component. We took matrix elements of the

relativistic multipole operators with the nonrelativistic limit of the wavefunctions,
retaining terms to order (1/M), and verified that this gave exact agreement with
the result obtained by substituting the conventional non- relativistic multipoles

into the non-relativistic formulas™



Using the expressions for the cross-sections derived above, we have computed
cross-sections and rates for various processes involving the "F —17 O isodoublet
system, and compared with the corresponding nonrelativistic limits. We treat the
A = 17 system as a valence 1d; neutron orbiting an inert 120 core. Fig. 1 shows
the differential cross-sections for the charge changing process 1, 4170 — ¢~ +17F
a8 well as the neutral current scattering process v +17 0 — v +7 0. The T =0
multipoles from the core (1°0) contribute to the neutral v - scattering process.
Since in principle there are no inherent limitations as to the kinematic range for
the probes, we have examined the high - q behavior of the differential cross -
sections, pushing to ¢ = 1.2 GeV. We observe interesting diffraction structure
in the high - q region, though the cross-section is too small for experimental

verification in the near future.

The integrated cross-sections are shown in Fig. 2 together with the corre-
sponding non-relativistic limits, where only the upper components of the wave-
functions are used and terms are retained only to order {1/M). As the curves
approach their asymptotic limits, the relativistic correction is seen to be around

5 % for v - scattering and 9 % for the charge changing reaction.

Just to see what the relativistic corrections are, we have also studied the 3 -
body system *H —* He with our formalism, using a simple model for *He of a 1sy
neutron hole in a ‘He core The upper part of Fig. 3 shows the integrated cross-
sections for the v - and 1/ - scattering from *He. The lower portion shows the total
cross-sections for the anti-neutrino charge changing reactions 7; +2 He —3 H 4 {+ ,
where | = ¢ and u. Here the comparison is with results previously obtained
with the nonrelativistic harmonic oscillator formalism ™ The magnitude of the

relativistic corrections are comparable to the A=17 system.

. We now turn to the conventional weak processes (f - decay and u - capture).
Table 1 shows the 8 - decay rates (*H —* He + e~ + Ue- 'F =17 0 + €t + 1),
For both nuclei, the relativistic result is compared with experimental values""'"

and with the nonrelativistic limit of the new results as defined above. The
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discrepancies with the nonrelativistic results is less than 1 %. However, the
approximations inherent in our calculations do not yet permit quantitative
explanation of the relativistic effects. It happens that the agreement with
experimental values is within 1.5 % for the A = 3 system, and 12 % for the
A = 17 system. Table 1 also shows the rates for i - capture on helium
(4~ +* He —* H + 1,). The new result differs from the nonrelativistic result

by 5 % , and lies on the lower end of the experimental error-bar!'”

In summary, using the QHD-formalism we have calculated nuclear semilep-
tonic processes in a consistent relativistic framework: relativistic corrections are
thus explicitly summed to all orders. We observe that the agreement with the
non-relativistic limit for the rates and integrated cross-sections for the processes
is within 9 %. In order to probe the quark stucture of nuclei, one must carry
the current hadronic analysis out to extreme kinematics, With no inherent lim-
itations to the kinematic range of probes in our formalism, we have provided
predictions for a wide range of ¢? for the exotic processes (neutrino reactions and
scattering). High priorities for improvements of our analysis include extensions
to more general nuclear configurations and a relativistic treatment for the center-
of-mass correction factor. Since we have a consistent field-theoretical framework,

Wwe can now systematically examine corrections to this analysis.
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Table 1 (8— Decay and u—Capture Rates in sec-! )

Process Rel. Hartree Nonrel. Limit Experiment
*H +*He+ e + v,- 1.815 x 10~° | 1.818 x 10-° (1.7906 + 0.0067) x 10~°
YEF ST O et + v, 1.223 x 10~ 1.228 x 1073 1.075 x 10-2
4~ +*He -5 H + v, 1458 1378 1505 + 46




FIGURE CAPTIONS

1. Solid curve: relativistic Hartree result. Dashed curve: nonrelativistic limit.
2. Solid curve: relatvistic Hartree result. Dashed curve: nonrelativistic limit

3. Solid curve: relativistic Hartree result. Dashed curve: nonrelativistic

harmonic oscillator result
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o (Integrated Cross—Section)
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